The nuclear ubiquitin-proteasome system degrades MyoD.
نویسندگان
چکیده
Many short-lived nuclear proteins are targeted for degradation by the ubiquitin-proteasome pathway. The role of the nucleus in regulating the turnover of these proteins is not well defined, although many components of the ubiquitin-proteasome system are localized in the nucleus. We have used nucleoplasm from highly purified HeLa nuclei to examine the degradation of a physiological substrate of the ubiquitin-proteasome system (MyoD). In vitro studies using inhibitors of the system demonstrate MyoD is degraded via the ubiquitin-proteasome pathway in HeLa nucleoplasm. Purified nucleoplasm in vitro also supports the generation of high molecular mass MyoD-ubiquitin adducts. In addition, in vivo studies, using leptomycin B to inhibit nuclear export, demonstrate that MyoD is degraded in HeLa cells by the nuclear ubiquitin-proteasome system.
منابع مشابه
Ubiquitin-proteasome-mediated degradation, intracellular localization, and protein synthesis of MyoD and Id1 during muscle differentiation.
Mammalian skeletal myogenesis results in the differentiation of myoblasts to mature syncytial myotubes, a process regulated by an intricate genetic network of at least three protein families: muscle regulatory factors, E proteins, and Id proteins. MyoD, a key muscle regulatory factor, and its negative regulator Id1 have both been shown to be degraded by the ubiquitin-proteasome system. Using C2...
متن کاملAtrophy and hypertrophy signalling in the diaphragm of patients with COPD.
We investigated whether atrophy and hypertrophy signalling were altered in the diaphragm of chronic obstructive pulmonary disease (COPD) patients. We studied diaphragm fibre dimensions and proportion, expression of markers of the ubiquitin-proteasome pathway, nuclear factor (NF)-kappaB pathways, muscle regulatory factors and myostatin in diaphragm biopsies from 19 patients with severe COPD and ...
متن کاملData on MyoD reduction by autophagy in C2C12 cells
Autophagy is a highly regulated physiologic mechanism in which cells maintain homeostasis by degrading excessive or unnecessary proteins and damaged or aged organelles through the lysosomal machinery (Yorimitsu and Klionsky, 2005) [1]. MyoD is basic helix-loop-helix (bHLH) transcription factors that regulate myoblast proliferation and myogenic differentiation. MyoD is expressed in adult skeleta...
متن کاملSPOTLIGHT REVIEW Cooperation between proteolytic systems in cardiomyocyte recycling
Cardiomyocytes are terminally differentiated cells and thus do not have the ability to dilute damaged proteins and organelles by cell division. Thus, proteolytic and recycling systems within the cardiomyocyte are essential to maintain cardiac function. The major proteolytic systems in the cell are: the ubiquitin–proteasome system, autophagy, and calpain. The ubiquitin–proteasome system degrades...
متن کاملNanobody-targeted E3-ubiquitin ligase complex degrades nuclear proteins
Targeted protein degradation is a powerful tool in determining the function of specific proteins or protein complexes. We fused nanobodies to SPOP, an adaptor protein of the Cullin-RING E3 ubiquitin ligase complex, resulting in rapid ubiquitination and subsequent proteasome-dependent degradation of specific nuclear proteins in mammalian cells and zebrafish embryos. This approach is easily modif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 276 25 شماره
صفحات -
تاریخ انتشار 2001